Coastal pollution priorities in British Columbia: from sediments to killer whales

Peter S. Ross

Where do we start?

- 100 million chemicals registered (EAI, 2015);
- Over 250,000 chemicals on the global marketplace, with 1,000 new chemicals every year;
- Wide variation of properties (water soluble vs. fat-soluble);
- Different receptors or species at risk;
- Range of emission histories;
- Local vs. global pollutants; complex mixtures of contaminant in the ocean.

Our Ocean Pollution Research Priorities

- Marine mammals as sentinels of ocean pollution (PBT chemicals)
- Safe traditional foods for aboriginal populations
- Oil spill science
- PollutionTracker (sediment and mussel monitoring)
- Microplastics in the ocean

The most PCB-contaminated marine mammals in the world: are they harmful and where do they come from?

PCBs are declining very slowly in the environment, with a half-life of approximately 30 years.

Projected times for 95% of population members to fall below the health effects threshold of 17 mg/kg:
- Southern resident killer whales ~2089 A.D. (Hickie, Macdonald & Ross, 2007)

The ocean is a sink for pollutants, where the food web is vulnerable to contamination

Properties of the chemical in question explain its fate in the environment;
- Fat-soluble chemicals attach to particles (sediments) or get into the food web (biomagnification);
- Fish-eating birds and marine mammals prone to high levels of persistent, bioaccumulative and toxic contaminants.

Our backyard: Harbour seals provide evidence of 'local' PCB and PBDE sources in British Columbia and Washington

Sediments reveal PCB and PBDE release and history in the BC coastal environment: sink and a source

Global sources: Salmon import POPs from the Pacific Ocean, while air delivers Asian POPs to BC within 5-10 days

17-06-20
Regulations have helped: PCBs have declined by 4-10 fold since the 1970s.

- PCBs are persistent, bioaccumulative and toxic;
- Were widely used as heat resistant oils in electric transformers and heavy industry 1929 to 1977;
- Have contaminated every single marine mammal on the planet;
- Associated with reproductive impairment, increased vulnerability to disease and endocrine disruption.

Flame retardants in harbor seals from the Salish Sea (BC & Washington) doubled every 3 years before their 2004 elimination.

- PBDEs are persistent, bioaccumulative and toxic;
- Very similar to PCBs;
- Were widely used in furniture, textiles & electronics;
- California children are the most PBDE-contaminated in the world because of strict State fire protection laws (TB 117).

An emerging threat to ocean life

- 25,000 polymers;
- Used in a wide variety of consumer and industrial products;
- Sometimes possesses endocrine-disrupting properties;
- Can cause acute or chronic toxicity;
- Documented in hundreds of species of fish, seabirds and marine mammals around the world;
- Is a pollutant class like no other...

Plastic is everywhere

- Charismatic species have been visible victims of nets and other debris for decades;
- Packing bands and fishing gear entangle turtles, seabirds and marine mammals everywhere;
- A slow, painful death often results.

Smaller yet: microplastics emerge as a new conservation concern

- Microplastic particles < 5 mm (variable minimum sizes, depending on the reporting lab);
- Two basic categories:
 - Primary microplastics are deliberately manufactured (microbeads and pellets);
 - Secondary microplastics are break-down products of larger items.

- Most microplastics likely originate from land-based sources:
 - Household and industrial waste + wastewater;
 - Fishing, aquaculture, shipping;
 - Decomposition of larger items

Seawater: up to 9,200 particles (fibers and fragments) per cubic meter in coastal BC.

Zooplankton are ingesting microplastic particles.

- Highest levels near the coast
- Neocalanus cristata
- Euphausia pacifica

Plastic represents a visible threat to sea life

- Charismatic species have been visible victims of nets and other debris for decades;
- Packing bands and fishing gear entangle turtles, seabirds and marine mammals everywhere;
- A slow, painful death often results.
Baseline contaminant data in coastal British Columbia: The PollutionTracker Project

The ocean's contaminant sink. Sediments.

Integrative water quality: Mussels.

PollutionTracker: Provincial Project.

PollutionTracker: Preliminary results.

Aboriginal peoples are more reliant on seafoods than the average consumer.

Microplastics found in zooplankton of both species, but differed in terms of frequency, size and type

<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency</th>
<th>Size (µm)</th>
<th>Polydispersity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neocalanus</td>
<td>1 in 38 +/−556 ± 149</td>
<td>816 ± 106</td>
<td>0.019 *</td>
</tr>
<tr>
<td>Euphausia</td>
<td>1 in 17 +/−816 ± 108</td>
<td>800 ± 100</td>
<td>0.014 *</td>
</tr>
</tbody>
</table>

*PollutionTracker: Preliminary results."

Troubling conservation questions for sea creatures of all shapes and sizes

- **Where are the straps and nets coming from that are entangling marine mammals?**
- **Where are the microplastics coming from that we found in coastal seawater?**
- Do microplastics represent a similar threat to small creatures (zooplankton or baby fish) that larger plastics present to marine mammals?

How can we better understand pollution priorities in coastal environments?

The canary in the coal mine warned the miners of dangerous gases;
monitoring the receiving environment typically reveals our failure to prevent release of pollutants;
The use of ocean ‘canaries’ can be informative, and informs us about mistakes … but their message comes late;
A balance of environmental sciences (field) and risk-based assessment/regulations (model) is needed.

Integrated data on coastal British Columbia:"

PollutionTracker®

- **PollutionTracker®**
- 50 PollutionTracker sites in coastal BC.

Phase 1: 50 PollutionTracker sites in coastal BC.

- **PollutionTracker®**
- 50 PollutionTracker sites in coastal BC.

Project priorities in coastal environments?

- Sediment PCB-153 concentrations vary along the BC coast, but highest in Victoria;
- Sediment penta-BDE concentrations vary along the BC coast, but highest in Victoria;
- Sediment PAH concentrations vary along the BC coast, but highest in Victoria;
- Sediment BaP concentrations reveal more complex story of emissions;
- Baseline data reveals more complex story of emissions;
- PollutionTracker profiles will shed light on nature of anthropogenic sources.