Protecting Lake Ontario

Port Granby
Treating Wastewater from the Low level Radioactive Waste Management Facility

Blair Greenly, AECOM
Till Freihammer, AECOM
Outline

- History
- Project Scope
- Key Project Stages
- Existing Treatment Facility
- Design Challenges
- Wastewater Treatment Process
- Specific Contaminants
Port Granby WMF

- Waste was generated as result of radium and uranium ore refining (1930’s to 1980’s)
- Marginally contaminated soil (Radium 226, Uranium, Arsenic)
- Existing Waste Water Treatment Plant (WWTP) collects and treats leachate from in–ground waste storage areas since 1977

History - Port Granby Waste Management Facility (WMF)

Port Granby, Lake Ontario
History

2001- Port Hope Area Initiative (PHAI)

• Municipality of Clarington, Municipality of Port Hope, Government of Canada
• Agreement to build a new long term waste management facility to safely treat the marginally contaminated soil

PHAI Management Office Tripartite

• Atomic Energy of Canada Ltd – Lead agency/license holder
• Public Works and Government Services Canada – Contract administrator
• Natural Resources Canada – Project sponsor
Project Scope

- AECL: Assume management and operation of the Port Granby waste management facility
- Safely clean up 450,000 m³ of historic low-level radioactive waste
 - Contaminated waste and soil will be excavated, transported to an approved long term waste management facility and covered with an engineered cap.
 - Contaminated surface water, groundwater and leachate will be treated at a new Wastewater Treatment Plant – designed to treat the volume and characteristics of the modified waste water streams.
Project Scope - Overview
Key Project Stages

STAGED PROJECT IMPLEMENTATION

Phase 1 - Regulatory Approval / Design - 2001
- Stage 1: Environmental Assessment Process, bench scale testing
 - 2011 – Public Hearing; Canadian Nuclear Safety Commission will issue a Waste Nuclear Substance License to AECL for the Port Granby Long Term Low Level Radioactive Waste Management Project for 10 years
- Stage 2: Pilot program, development of detailed design – tender ready

Phase 2 – Clean up and construction – started in 2012
- Construction of long term WMF and WWTP
- Full remediation project will take 10 years including 5 years waste transfer, site remediation and decommissioning of existing facilities

Phase 3 – Long term monitoring and maintenance – 2021 on
- Continuous monitoring of the remediated site and the new facilities
Existing WMF Wastewater Treatment
Design - Challenges

- Challenging residuals management process
- Varying inputs – concentrations and flows will vary significantly over the life of the WWTP, due to weather and construction activities
- Relatively unknown water matrix
- Flexible process concept required due to varying flows during construction phase and post-construction

Contaminants of Potential Concern (COPC)

COPC list was developed during EA

Primary COPC:
- Arsenic,
- Radium -226,
- Uranium,
- Nitrate

<table>
<thead>
<tr>
<th>Parameters of Potential Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia-N</td>
</tr>
<tr>
<td>Nickel</td>
</tr>
<tr>
<td>Arsenic</td>
</tr>
<tr>
<td>Nitrate-N</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Nitrite - N</td>
</tr>
<tr>
<td>Cobalt</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Fluoride</td>
</tr>
<tr>
<td>Radium-226</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Selenium</td>
</tr>
<tr>
<td>Lead</td>
</tr>
<tr>
<td>Uranium</td>
</tr>
<tr>
<td>Magnesium</td>
</tr>
<tr>
<td>Vanadium</td>
</tr>
<tr>
<td>Molybdenum</td>
</tr>
</tbody>
</table>

Contaminants of Potential Concern (Source: Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility)
Anticipated Flow Rates Future WWTP

Predicted Average and Maximum Combined Monthly Flows to LTWMF WWTP
(source: Design Rationale and Process Control Description - 2011)
Water Conveyance to and from Port Granby WWTP
Pilot Scale Test

• Pilot scale testing for water treatment completed under supervision of AECL in 2010 to confirm the performance of treatment systems and determine the design requirements.

• Pilot scale test included:
 – Membrane bio-reactor (MBR)
 – Reverse Osmosis (RO) treatment

• Overall removal rates for primary COPC’s Arsenic, Uranium, Radium-226 and Nitrate were 98-99%
Wastewater Treatment & Residuals Management Strategy

1. Contaminated water from all sources
2. Equalization
3. Biological Treatment (MBR)
 - Aeration Tank
 - Membrane Tank
 - Removal of metals & radionuclides
 - Nitrification/De-nitrification
4. Reverse Osmosis
 - Removal of metals & radionuclides
 - Removal of nitrate
5. pH adjustment
6. Thickening/Dewatering
7. Contaminated solids to long term WMF
8. Thickening/Dewatering
9. Evaporator
10. Dryer

Treated effluent
Wastewater Treatment System Design Criteria

• Average flow 10,000 to 14,000 m³/month (14 to 19 m³/hr)
• Average Peak flow 25,000 to 35,000 m³/month (35 to 48 m³/hr)
• Influent projections of selected primary contaminants¹
• Details of discharge criteria for WWTP will be included in the Waste Nuclear Substance license to be issued by CNSC

<table>
<thead>
<tr>
<th>COPC</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (mg/l)</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>Uranium (mg/l)</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Radium-226 (Bq/l)</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>Nitrate (mg/l)</td>
<td>100</td>
<td>2000</td>
</tr>
</tbody>
</table>

Design Features of the Future WWTP

Equalization
• Flow and Load fluctuations

Dual treatment train configuration for water treatment trains
• Ability to adapt Treatment plant to seasonal flow scenarios and maintenance requirements

Multiple barrier process (i.e. MBR followed by RO)
• Flexibility to adapt to fluctuations in influent quality
• Depending on flows and loads treatment concept can be altered to bypass treatment stages (e.g. brine treatment)
• Allocation of space for future processes (i.e. ion exchange)
Contaminants of potential concern: Uranium

WWTP influent: Uranium:
Average: 7 mg/l; Maximum: 16 mg/l

WWTP solids dewatering: Uranium:
Average: 900 - 8200 mg/l
Maximum: 1,800 – 17,000 mg/l
Contaminants of potential Concern: Radium-226

WWTP influent: Radium - 226:
Average: 21.6 Bq/l; Maximum: 55.4 Bq/l

WWTP solids dewatering: Radium - 226:
Average: 900 - 8200 mg/l
Maximum: 1,800 – 17,000 mg/l
Contaminants of potential Concern: Ra-226 and U

• Following simulations Ra-226 and U:

 – No permanent shielding is required around equipment

 – Operations: Minimize solids handling time

 – Wet handling methods to minimize generation of airborne particulate matter
Conclusions

- WWTP - Treatment concept will provide process flexibility
- WWTP will achieve a high effluent quality
- Minimization of waste
- Anticipated removal rates of COPC will significantly reduce loading to environment
Acknowledgements

Port Hope Area Initiative

Jimi Arey
Public Works and Government Services Canada

Gary Vandergaast
Atomic Energy of Canada Limited

Barb Chaput
Thank you!