Pilot project on RDX treatability in a tributary of Small Pines river, 2 CDSB Valcartier (Quebec)

Presenters
François-David Cloutier, Assistant Environmental Officer (contaminated sites), Resource Conservation Branch, DND –Valcartier support base
Jacynthe Baril, Project Coordinator, Environmental Services, Defence Construction Canada –Valcartier support base

National Workshop on Federal Contaminated sites
April 2014
Overview

1) Introduction: Valcartier and general overview of RDX;
2) Searching for solutions;
3) Construction;
4) Problems encountered and required changes;
5) Monitoring and follow-up actions;
6) Questions?
Valcartier Support Base

- 30 km up in the Northwest part of Quebec city;
- Area of 220 km2;
- Use of the Range and Training Areas;
- Pines river/St-Joseph Lake;
Energetic materials (RDX)

- Used in training and in combat;
- Often found in compounds. Here are some examples:

<table>
<thead>
<tr>
<th>Military Names (Compounds)</th>
<th>Uses</th>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp B</td>
<td>Artillery, mortar, grenade</td>
<td>60% RDX 40% TNT</td>
</tr>
<tr>
<td>C-4</td>
<td>Demolition</td>
<td>91% RDX (+ 9% wax)</td>
</tr>
<tr>
<td>Octol</td>
<td>Anti-tank shells</td>
<td>70 % HMX (10% RDX) 30% TNT</td>
</tr>
</tbody>
</table>

- RDX (Hexahydro-1,3,5-trinitro- 1,3,5-triazine): mostly used for shells and high explosive rounds (synonyms: cyclonite, hexogen, ...);

- Main sources of contaminant;

- Physical, chemical and toxicological properties of RDX:
 - Moderately soluble;
 - Possibly carcinogenic (US EPA);
 - Low natural biodegradation.
General overview of RDX

Sampling work

• Sampling of source zones, within DND’s territory and downstream, at receptors.
 - RDX analysis (low limit): detection limit at 0.03g/L;
 - Sampling at different periods during the year (spring, lowest water level, heavy rain episode, fall).

Managing criteria

• MDDEFP’s Quality criteria for surface water:
 (Contamination prevention - water and aquatic life): 0.3 µg/L;

 → Target considered to allow protection of the drinking water resource.

Other reference values

<table>
<thead>
<tr>
<th></th>
<th>MDDEFP</th>
<th>DRSP (Qbc)</th>
<th>Health Canada</th>
<th>US EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic life</td>
<td>42 µg/L</td>
<td>3 µg/L</td>
<td>9 µg/L</td>
<td>2 µg/L</td>
</tr>
</tbody>
</table>
Monitoring RDX (general observations)

- Surface water problematic;
- Most significant [] have been measured in spring;
- Liri impact area: significant source;
- Risk of impact on receptors.

<0.03 µg/L to 0.835 µg/L

0.48 µg/L to 2.48 µg/L

Lac St-Joseph

Drinking water intake

Monitoring RDX (general observations)

- Surface water problematic;
- Most significant [] have been measured in spring;
- Liri impact area: significant source;
- Risk of impact on receptors.
Liri impact area

- Area of 8.4 km2
- Topography;
- Geology;
- Hydrography;
- Usage.
Searching for solutions

- **Design and implementation of a solution to RDX**:
 - **Considerations:**
 - Restricted access (security and site usage);
 - No electricity;
 - Simple and fast to build;
 - Low installation and repair costs (demolition risk);
 - Treatment efficiency.

- **Preliminary steps:**
 - Implementing contracts (Biogénie SRDC inc, Englobe corp. division);
 - Concept study: Filter basin on peatbog, filter marsh and filtration on tributaries (chosen concept);
 - Laboratory study: Filtration tests with carbon in columns;
 - Selecting a definitive site (RP-20);
 - Drawing and specifications.
Selected location

+++

- Tributary of Small Pines river (low flow rate);
- [] and ↑ load;
- Accessible by vehicles;
- Site configuration (ex. landscape, vegetation, etc.)

- Geographic location (in the middle of the impact area);
- Limited access → training;
- Unexploded explosive ordnances (UXO);
- Risk of damage.
Design

Design description:
Three (3) main components:

1) Sediment pool (total of 3);
2) Screening devices;
3) Filtering dam.

Design criterias...Here are some examples:

1) Flow rate: maximal annual flow of 0.12 m^3/s;
2) [] and RDX load: maximal theoretical [] of 10 µg/L;
3) Carbon filtering capacity;
4) Efficiency vs hydraulic conductivity: mix of 2 carbon types.
5) Etc...
Design details
Design details (continued)
Construction

Preliminary work:
• Environmental assessment (EA);
• DFO approval;
• Coordination with RTAs;
• Implementing contracts (construction/Biogénie ; UXOs/GEMTECH);
• DCC technical support with UXOs;
• Land surveying;
• Vegetation removal;
• Bypass channel.

Construction (august/september 2013):
• 21 days of access window - 14 days required;
• Use of “low tech” materials (ex. geomembrane, riprap, etc.)

Commissioning – september 4th 2013
Run-in period

- **Initial performance (September 2013)**
 - *64% Efficiency*: 5.4 µg/L upstream and 2.0 µg/L downstream.

- **Fall 2013**
 - ↑ of upstream water level caused by a loss of hydraulic conductivity (fine sediments);
 - Design allows an overflow above the filter, when the maximum operating flows are exceeded or in case of clogging.
Modifications required

Problem analysis and investigation:

• Management of sediments:
 - Carbon sampling (% saturation) → RDX removal rate of 96%.

• Solution: Installation of a 2 inches PVC screen wall:
 - Allows the diversion or the sedimentation of fine sediments without restricting the flow.

Modifications (November 2013):

• Implementation of a contract (Biogénie);
• Coordination with RTAs authorities;
• EOD work on an access road by the 5 CER;
• Modifications with a very short window of access.
Modifications required
Modifications required (continued)
Monitoring –post modifications

• Sampling post-modifications (november 25th 2013):
 - Efficiency of 75% : 5,7µg/L upstream and 1,4 µg/L downstream.

• No intervention or visit possible before spring 2014! SECURITY!!!

• Spring 2014 (to be continued...):
 - Monitoring of the RDX concentration levels;
 - Follow-up on the work condition and efficiency during spring melt;
 - Maintenance, modifications and repairs (if needed).
Next actions

• The mass balance indicates that higher reduction in RDX mass throughout Valcartier is required to ensure the receptors protection.

• R&D is ongoing, but no solution to reduce RDX “at the source” is actually available.

• Following the first system performance analysis:
 - Design and construction of a second filtration device in 2014;
 - Support from an Engineering military unit (5 CER) for construction;
 - Monitoring the other contributor, and potentially contributor sites...
Questions????